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INTERLAMINAR STRESS SINGULARITIES AT A STRAIGHT
FREE EDGE IN COMPOSITE LAMINATES
I. S. Raju* and John H. Crews, Jr.
NASA Langley Research Center
Hampton, Virginia 23665
SUMMARY g
A quasi-three-dimensional finite-element analysis was used to analyze

the edge-stress problem in four-ply, composite laminates. The seven laminates
that were considered belong to the laminate family [6/(6~90)]S, where
0 < 8 < 90. Systematic convergence studies were made to explore the existence
of stress singularities near the free edge. The present analysis appears to
confirm the existence of stress singularities at the intersection of the inter-
face and the free edge. The power of the stress singularity was the same for

all seven laminates considered.

INTRODUCTION

Many composite laminates develop high interlaminar stresses near free
edges due to mechanical loads, thermal loads, or hygroscopic effects. The
interlaminar stresses can lead to delamination and eventual failure of the
laminate. Several numerical analyses have computed stress distributions in a
finite-width laminate subjected to uniform axial strain. This case is often
referred to as the straight-edge or the edge-stress problem. In reference 1, a
finite—différence scheme was used to analyze the edge-stress problem of a [145]s
laminate. In reference 2, a three-dimensional finite-element method was used to

analyze the edge effects in [145]S and [90/0]S laminates. In reference 3, a
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quasi-three-dimensional finite-element analysis was used to anal&ze [0/90]5,
[90/0]5’ [145]8, and several quasi-isotropic laminates. These analyses used
coarse mesh models because of limitations on computing storages and times.
However, all showed that the interlaminar stresses had very localized peaks
near the free edge. If these localized peaks were caused by a singularity,
as suggested in references 1 and 3, singularity analyses could be~developed
and used to study delaminations.

The present study investigated the existence of stress singularities at a
free edge in several four-ply laminates that belong to the laminate family
[6/(8—90)]5, 0 < 68 <90. To this end, quasi-three-dimensional finite-element
analysis was used. The analysis, which is similar to that of reference 3,
used eight-noded isoparametric elements.

The interlaminar stresses are presented as distributions through the
thickness at the free edge, and along the interface between the plies. The
results are compared and discussed for seven different laminates. Stress
distributions calculated from the analyses were used in a procedure to

investigate the existence of stress singularities.

SYMBOLS

Al strength of singularity, MPa
b half-width of the straight-edge laminate, m
Eii Young's modulus in i-direction, MPa
G, . shear modulus, MPa

1]
h ply thickness, m
T nondimensional distance from the free edge, r = (b ~ y)/h

U,V,W displacement functions, m



u,v,w displacements in x-, y-, and z-directions, respectively, m
X,¥,2 Cartesian coordinates, m
a power of the singularity
EO uniform axial strain imposed on the straight-edge laminate,

g = 0.001

o
6 outer ply angle, deg
v, . Poisson's ratios
13
{o} Cartesian stresses, 0, 0, O GO0 _, O , O _, MPa
X y z Xy yz zX

Subscripts:
1,3 i,j =1,2,3
1,2,3 longitudinal, transverse, and thickness directions of a unidirec-

tional ply

ANALYSIS

This section describes the laminates analyzed, the quasi-three-dimensional
formulation, and the finite-element idealizations used in this study. This

section also discusses the procedure used to investigate the existence of a

stress singularity.

Laminates
The laminates considered in the analyses were [0/90]3, [15/—75]8,
[30/—60]8, [i§5]s, [60/—30]5, [75/—15]5, and [90/0]5. As previously mentioned,
these seven laminates belong to the family [9/(6—90)]5, 0 < 6 < 90. The top
ply angle, -8, is shown in figure 1(a).
Each ply was idealized as a homogeneous, elastic orthotropic material

with properties (refs. 1, 2, and 3),
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1, = 137.9 GPa (20 x 10% psi)

E,, = E 14.48 Gra (2.1 x 106 psi)

22 33

G..=G.. =0G. =5.86 GPa (0.85 x 10° psi)

12 23 31

]

Vig = Vi3 = Vg 0.21 .

The subscripts 1, 2, and 3 correspond to the longitudinal, transverse, and

thickness directions, respectively, of the individual ply.

Quasi~Three-Dimensional Analysis
Figure 1(a) shows a long, symmetric laminate loaded in the x-direction.

The laminate has a width of 2b and has four plies, each of thickness h.

Away from the ends, the displacements in any X = constant plane were assumed
to be
u(x,y,z) = e X + U(y,z)
v(x,y,z) = V(y,z) (1D
w(x,y,z) = W(y,2)

where EO is a uniform axial strain, and U,V,W are functions of the coor-
dinates y and z alone (ref. 1). Furthermore, because of symmetries
inherent in the layups considered, U, V, and W satisfy the following
requirements:

U(y,z) = -U(-y,-2)

V(y,z) = -V(-y,2) (2)

—W(y,—z)

W(y,z)



and

9

I -9 -
’é’z—U(y’O) = 3z V(Y,O) = ay W(O,Z) =0

The displacement field of equations (1) should satisfy the equations of
equilibrium and the stress—-free conditions on the edges, y = *b, and top and
bottom surfaces, 2z = *2h, -

Because exact solutions are not available for the complex three-dimensional
problem, approximate methods were used in references 1 through 3. The present
study was based on a finite-element analysis, like that in reference 3, except
eight-noded quadrilateral isoparametric elements were used rather than three-

noded triangular elements.

Finite-Element Idealizations

Because of the symmetries in the problem, only one quadrant of an
x = constant plane was idealized. The quadrant (0<y<b and 0 <z < 2h)
is shown as the shaded region in figure 1(b). The displacement functions U
and V were prescribed as zero on the y = 0 line, and the displacement
function W was prescribed as zero on the 2z = 0 1line.

The shaded region in figure 1(b) was idealized by eight-noded isoparametric
elements in the rectangular-mesh models shown in figure 2 and the polar-mesh ,
model in figure 3. The rectangular-mesh model had a rectangular arrangement
throughout. In contrast, the polar model had a polar mesh near the free edge
and rectang@lar arrangement elsewhere. The rectangular mesh was used to com-
pute the stress distributions, and the polar mesh was used to investigate the
stress singularities.

To study the convergence of the stresses near the free edge, three rec-

tangular meshes were used. The medium mesh in figure 2(b) was obtained by
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subdividing each element of the coarse mesh (fig. 2(a)) into fou£ elements.
Similarly, the fine mesh in figure 2(c) was obtained by subdividing each ele-
ment of the medium mesh into four elements. The coarse mesh had 135 nodes and
36 elements, the medium mesh had 485 nodes and 144 elements, and the fine mesh
had 1833 nodes and 576 elements.

The polar mesh had the polar arrangement in the region (19h <y S.ZOh,
0<z< 2h) near the laminate free edge. As in the rectangular-mesh case,
three meshes--coarse, medium, and fine--were used. Only the polar fine mesh
is shown in figure 3. The three polar meshes had the same number of nodes &nd
elements as their corresponding rectangular counterparts. Near the free edge,

however, the polar fine mesh was an order of magnitude finer than the rectangu-

lar fine mesh.

Analysis of Singularities
The stress distribution along a radial line from a singularity can be

expressed as (refs. 4 and 5)
o = o+ o) (3)

where r 1is the distance from the singularity, A1 and o are constants,
—o+1 -0+1 .
and O(r ) represents terms of the order r and higher. For small

distances r, the singular term dominates and equation (3) can be approxi-

mated by

or

log 0 = log A, - o logr (4)



Hence, a log 0 vs. log r plot would be a line with a slope of "—a and a
g-intercept of Al. The o and A1 are the power and the strength of the
singularity, respectively.

Equation (4) provided the basis for a precedure to investigate the
existence of stress singularities at the laminate edge. This equation was
fitted to the computed stresses. If the equation fitted these stresses well
and if the slope of the fitted line was negative, a stress singularity with
power « was indicated. This log-linear procedure was verified in refer-
ence 4 by applying it to several well-known singular-stress problems in two-
dimensional elasticity.

The log-linear procedure works best where the singular term strongly

dominates the other terms. Therefore, the procedure should be applied only in

the regions very close to the singularity.

RESULTS AND DISCUSSION

First, distributions are presented for interlaminar normal stress OZ
and the shear stress O, for the various [9/(6—90)]3, 0 < 6 <90, laminates.
Then, the results are investigated for the existence of stress singularities
at the free edge. For convenience, the intersection of the interface and the
free edge (z = h; y = b) will be called the interface corner. Similarly, the
intersection of the midplane and the free edge (z = 0; y = b) will be called
the midplane corner.

The uniform axial strain, Eo, was arbitrarily set equal to 0.001 through-

out this study.

Stress Distributions
The stresses with the steepest gradients near the free edge were the

normal stress Oz and the shear stress Oxz' The distributions for these




8
stresses, through the thickness and along the interface, are presented and com-
pared in this section.

Interlaminar normal stress, OZ.—

[0/90]S laminate: Figure 4(a) shows the GZ distribution through the
thickness along the free edge (y = b) for the three rectangular meshes (coarse;
medium, and fine). In this figure and all subsequent figures, the fiﬂe mesh
results are represented by a curve through the data; only the value at the
interface is shown as a discrete value (diamond symbol). The coarse and medium
mesh results are shown by circular and square symbols, respectively. The solid
symbols indicate the stresses in the top ply. As shown on the figure, the
values of OZ for the three meshes agree closely except near the interface
(z = h). At the interface the three meshes produced noticeably different values.
In addition, Gz is discontinuous across the interface; this discontinuity is
slightly larger with progressive mesh refinement. Hence, the stress state shown
in figure 4(a) suggests that a singularity exists at the interface cornmer. In
contrast, at the midplane (z = o) the OZ values agree for the three meshes
and show no evidence of a singularity at the midplane corner.

Figure 4(b) shows the average OZ from both plies plotted against a nor-
malized distance from the edge. The OZ results from the three meshes are in
excellent agreement for (b - y)/h > 0.08. However, at the free edge, vy = b,
the computed OZ values are noticeably different for the three meshes, with
the fine mesh producing the largest value. Therefore, results in both
figures 4(a) and 4(b) suggest that a singularity exists at the interface corner.

[145]8 laminate: Figure 5(a) shows the OZ distribution through the |
thickness at the free edge (y = b). As in the [0/90]S laminate, the values of

o, for the three meshes agree closely everywhere except near the interface

(z = h), where a steep gradient exists. Figure 5(b) shows the distribution of
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Gz along the interface. As expected, the results from the threé meshes agree
except very near the free edge. Further, the computed value of Oz at the
free edge was larger for progressive mesh refinement. These results for the
[14518 laminate also suggest a Oz singularity at the interface cormer.

Other laminates: Figures 6 and 7 show the Oz “distributions through the
thickness and along the interface for [15/—75]8, [75/—15]5, [30/-50]5; and
[60/—30]5, respectively. In these figures only the fine mesh results are
shown. The distributions of OZ near the free edge have steep gradients for
all the four laminates, indicating a possible singularity.

Comparisons: The results in figures 4 through 7 show that, except for
[0/90]S and [90/0]S laminates, the interlaminar normal stress, O, is compres-—
sive at the interface cornmer. In contrast, at the midplane corner only lami-
nates [75/—15]S and [90/0]S develop compressive O_.

Interlaminar shear stress, GXZ.—

[i45]s laminate: Figure 8(a) presents the through-the-thickness distribu-
tions of Oxz at the free edge obtained using the three rectangular meshes for
the [i45]s laminate. Figure 8(b) shows the O_, distribution along the inter-
face. For all the meshes Oxz closely agrees everywhere except near the
interface in figure 8(a) and free edge in figure 8(b). The gradients are steep
in this region, again indicating a possible singularity for the [ihS]s laminate.

Other laminates: For the other laminates considered the Oz distributions
were similar to the [t45]s results and, therefore, are not shown. Also, the
average Oxz values at the interface for a laminate and its corresponding com—-
plementary laminate (for example, [15/——75]s and [75/—15]S> differed only in the

third significant digit.
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Comparisons: For all laminates considered the Oxz distriﬁutions had

the same sign along the interface. The [15/~75]S and [75/—15]S developed the
largest Oxz very near the free edge compared to other laminates. Near the
free edge, the o, Stresses are larger (by at least a factor of 3) than the
corresponding O stresses in each laminate, except for the [0/90]s and [90/0]S
laminates for which oxz is identically zero. " .
For all laminates considered, ze is identically zero at the midplane

because of symmetry. Therefore, analysis of singularities is confined to the

neighborhood of the interface corner.

Singularities

Both the g, and Oxz distributions suggest that singularities exist at
the interface corner. To identify these singularities, both o, and O
stress data may be used in the log-linear procedure outlined in the analysis
section. However, for the present edge-stress case (generalized plane strain),
if one stress is singular at a point, then all stresses are and they all have
the same singularity power, «. This conclusion follows from the observation
that these stresses have similar functional forms, derived from the same order
derivatives of the same stress functions, as shown in reference 6. Therefore,
either OZ or Oxz may be used in the log-linear procedure to determine the
power of the singularity.

To decide which stress was better suited for the log-linear procedure,
known singularities were examined. The case of a center-cracked plate showed
that the log-linear procedure gave best results when the predominant stress was
used. For the present study, the o,, stress was predominant. As previously
mentioned, the O, values near the edge were at least three times as large as

Pt

the o, values, except for the [0/90]S and [90/0]S laminates. Further, as
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pointed out earlier, the procedure works best when the singular term in

equation (3) strongly dominates the other terms. The O, distributions had

the same sign all along the interface; in Contrast, the o, distributions

changed sign near the edge. This suggests that the singular term for Oxz

is dominant over a wider range of data than for o, For these reasons

0., was used in the log-linear procedure. |
The results for the rectangular and polar meshes were indistinguishable

for distances greater than 0.04h from the free edge. Very near the free

edge, however, the polar mesh yielded a greater concentration of data and,

therefore, was used to analyze stress singularities.

[145]5 laminate.- Figure 9 shows the log-log plots of the absolute value

of oxz’ along the interface for a [145]S laminate, plotted against r. The
stresses obtained from the three polar meshes are plotted in this figure. As
expected, all three meshes show a linear portion with a negative slope, indi-
cating a singularity. Before calculating the power of the singularity, the
linear region for each set of data was estimated visually. (The two points
closest to the edge were neglected because they represent nodes for the ele-
ment at the singularity, and this element cannot be expected to yield accurate
stresses.) Stresses from the coarse, medium, and fine meshes appear to be
linear in the ranges of 0.0125 < r < 0.07, 0.0035 < r < 0.015, and

0.0015 < r < 0.01, respectively. In these ranges a linear least-square-
fitting procedure was used to determine the power (a) and the strength (Al) of

the singularity in the equation

log oxz = log Al -.a logr

The following valuss were found for the three meshes.
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POLAR MESH
COARSE MEDIUM FINE
Mesh index, i 1 2 3
Power, G 0.256 0.182 0.170 ‘
Percent change in Q,
a. - O,
i i+l (100) - 41 7
i

Strength Al, MPa 5.702 7.509 7.950

As shown in the table, by refining the coarse mesh to generate the medium
mesh, the a changed by 41 percent. For the fine mesh, the additional refine-
ment produced only a 7-percent change, which is only about one-sixth the
42-percent change. Further mesh refinement (dividing each fine mesh element
into four elements) would probably cause an additional l-percent change
(one-sixth of 7 percent). This l-percent change is neglibibly small. Similar
arguments can be made for the strength of the singularity, Al' Therefore,
the present fine mesh results were treated as converged values.

To check the accuracy of the present procedure, the [iAS]S singularity
was computed using the Oxz stresses along nine different radial lines of the
polar mesh.- The calculated power of the singularity o should be the same
for all such lines. Figure 10 shows o and the corresponding A1 values
plotted against ¢, the angular position of each radial line. These values of

a vary slightly, from 0.195 at ¢ = 0O to an interface value of 0.170 at

¢ = m/2. At the interface, the Oxz stresses were largest, as shown by the
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largest Al value at ¢ = m/2 in figure 10. As mentioned earl&er, the pres-
ent procedure yields best results when the predominant stresses are used.
Because the oxz stress was largest at the interface (¢ = m/2), the a wvalue
of 0.170 is believed to be accurate. Also, the absolute value of the correla-
tion coefficient in the least-square procedure was closest to unity (0.9996)
for ¢ = m/2. "

Other laminates.- The O s stress was also used to identify the singu-

larities for the [15/—75]8, [75/—15]8, [30/—60]5, and [60/—30]S laminates.
Figure 11 shows the log-log plots for these four laminates. For comparison
the previous results for the [i45]s laminate are also included in this figure.
As pointed out earlier, for a laminate and its complementary laminate
the ze results differed only in the third significant digit. Therefore,
the power of the singularity for a laminate and its complement is apparently
identical. Also note that log-linear plots in figure 11 are parallel to each
other. Therefore, the power of the singularities for [15/—75]5, [75/—15]8,
[30/~60]s, and [60/-30]S are identical to that for the [145]8 case, that is,
0.170. However, the three parallel lines in figure 11 are separated, indicating
different singularity strengths, Al.
Figure 12 shows o and A, for various [6/(6—90)]S laminates as functions
of the Outer.ply angle, 6. To investigate o and Al in the region
0 <6 <15 (and 75 <6 < 90), the laminates [2/—88]S and [7.5/—82.5]S were
also considered. The «a values for these laminates are nearly equal to
0.170, but the Al values are much smaller than for the other laminates. This
was expected because the Oxz stress is identically zero for [0/90]s and

[90/0]S laminates; thus, for 0 mnearly equal to zero A should also be

very small. Dotted lines in figure 12 represent extrapolations to zero.
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Figure 12 shows that both a and A1 are symmetric about 6 = 45°. Also,

the strength, A., is maximum for the [15/—75]s and [75/—15]S laminates.

l,

[0/90]S and [90/0]s laminates.~ For the [0/90]S laminate, o, was used

in the log-linear procedure because the Oxz was identically zero. As
expected, the log-log plot in figure 13 shows a linear region with a negative
slope. The power of the singularity was obtained from the least-square proce-
dure as 0.202. This power is larger than the 0.17 calculated from other
laminates but is only slightly beyond the range shown in figure 10. The com-
puted power of 0.202 probably occurred because the OZ singularity for the
[0/90]S laminate was not as dominant as the O, singularity analyzed for the
other laminates. However, if the log-linear procedure were applied to OZ
stresses for smaller r values, the power may also approach 0.17. Such cal-
culations for smaller r values would require further mesh refinement, which
is beyond the scope of this paper.

For the [90/0]S laminate neither Oz nor Oxz could be used in the
log-linear procedure. The Oxz was identically zero and the Oz changed
sign very near the free edge (see fig. 4(b)). Consequently, the singularity
for the [90/0]S laminate was not computed. However, as shown previously for
other laminates, a laminate and its complementary laminate have the same a.
Therefore, by.induction, the singularities for [0/90]S and [90/0]S should also
be identical and a should be 0.17.

In general, these results suggest that the power of the singularities for
[8/(8—90)]8, 0 < 6 < 90, laminates with material properties used in this paper
is about 0.17. This power should be interpreted only as an approximate value

because of the numerical accuracy of the log-linear procedure.
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CONCLUDING REMARKS

The stresses near a straight, free edge in composite laminates subjected
to uniform axial strain were studied by a quasi-three-dimensional finite-
element analysis. Seven different four-ply laminates were analyzed: [0/90]s’
[15/—75]8, [30/—60]8, [iAS]S, [60/—30]8, [75/-15]3, and [90/0]5»—belonging to |
the family [9/(6—90)]5, 0 < 8 < 90. The laminates were idealized by eight-
noded isoparametric elements. Systematic convergence studies were made with
the aid of three meshes to examine the interlaminar stresses near the free
edge.

Near the intersection of the interface and the free edge, the interlaminar
normal stress O, was tensile for [0/90] _ and [90/0]  laminates and was com-
pressive for all other laminates considered. The interlaminar shear stress
Oxz was much larger than the normal stress OZ for all laminates except for
[0/90]s and [90/0]S laminates (for which O, is identically zero). Among
the laminates considered, laminates [15/—75]S and [75/—15]S developed the
highest Oxz'

Convergence studies indicated that stress singularities probably exist at
the intersection of the interface and the free edge, and the singularities do
not exist at the midplane. A log-linear curve fitting procedure appears to
confirm the existence of a singular point at the intersection of the interface
and free edge. The shear stress data close to the singular point were used in
the log-linear procedure to evaluate the power of the singularities.

The present results suggest that the power of the singularity is the same for
all orthotropic laminates in the family represented by [6/(8~9O)]S, 0 <6 < 90
for a given set of material properties. For these laminates, &ith material pro-

perties of the graphite/epoxy considered, the power of the singularity was about

0.17.
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(b) An x = constant plane.

(c) 3-D stress components.

Figure 1.- Laminate configuration, loading, and stresses.
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Figure 4.- The G, distributions for [()/90]S and [90/0]s laminates.
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Figure 10.- Angular variation of strength and power of O singularity
for [i45]s laminate.
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Figure 11.- Log-log plot for o, along interface (z =h)

for various laminates.
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